+91 8617752708

International Research Journal of Pure and Applied Chemistry, ISSN: 2231-3443,Vol.: 16, Issue.: 2

Original-research-article

Preparation and Characterization of Methacrylic Acid-based Molecularly Imprinted Polymer as a New Adsorbent for Recognition of 1,4-dihydroxybenzene

 

Kehinde N. Awokoya1*, Vincent O. Oninla1, Iyanuoluwa T. Adeleke1 and Jonathan O. Babalola2

1Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.

2Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria.

Article Information

Editor(s):

(1) Bengi Uslu, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.

(2) SungCheal Moon, Korea Institute of Materials Science (KIMS), Industrial Technology Support Division, Changwon, Republic of Korea.

Reviewers:

(1) Otávio Augusto Chaves, Universidade Federal Rural Do Rio de Janeiro, Brazil.

(2) Juan-Gabriel Segovia-Hernández, Universidad de Guanajuato, México.

(3) Kartika Rathore, Jai Narain Vyas University, India.

(4) Manohar V. Lokhande, Sathaye College, Maharashtra, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/24025

Abstracts

This article presents the first example of sequentially reported template removal procedure in molecularly imprinted polymers (MIPs) using UV-spectrophotometer. Polymerization was achieved in a glass tube containing 1,4-dihydroxybenzene (DHB) template molecule, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), azobisisobutyronitrile (AIBN). The polymer matrix obtained was ground and the template molecule was removed from polymer particles by leaching with methanol/acetic acid, which leaves cavities in the polymer material. The polymer material both prior to and after leaching was characterized by Fourier transform infrared spectroscopy, Scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller model. The rate of template removal from the synthesized MIPs was studied at ten different times: 15, 30, 45, 60, 75, 90, 105, 120, 135, and 150 min. The percentage leached from the template increased sharply within 60 min, and over 90% of the template was removed within 75 min. The recovery of DHB achieved in aqueous solution, using the MIP sorbent, was found to range from 47.45 to 86.56%, while that of non-imprinted polymer (NIP) sorbent was found to range from 7.73 to 83.10%. The elastic retractive force between the polymer and solvent was found to be higher in chloroform than water and methanol. The study shows that MAA is a suitable matrix for the formation of binding sites for water soluble template molecules through molecular imprinting.

Keywords :

Molecular imprinting; template removal; adsorption; 1,4-dihydroxybenzene aqueous media; polymer characterization.

Full Article - PDF    Page 1-11

DOI : 10.9734/IRJPAC/2018/38586

Review History    Comments

Our Contacts

Guest House Road, Street no - 1/6,
Hooghly, West Bengal,
India

+91 8617752708

 

Third Floor, 207 Regent Street
London, W1B 3HH,
UK

+44 20-3031-1429