Quick Menu

Upcoming Journals

Annual Research & Review in Biology

Annual Research & Review in Biology, ISSN: 2347-565X,Vol.: 22, Issue.: 3

Original-research-article

An Inexpensive Microfluidic PDMS Chip for Visual Detection of Biofilm-forming Bacteria

 

Rico Kolossa1, Assem Abolmaaty2*, D. M. L. Meyer1 and Zongqin Zhang1

1Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island, Kingston, RI, 02881, USA.

2Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.

 

Article Information

Editor(s):

(1) Mamdouh Moawad Ali, Professor, Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Giza, Egypt.

(2) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA.

Reviewers:

(1) Bartosz Kempisty, Poznan University of Medical Sciences, Poland.

(2) Michael G. Mauk, Drexel University, College of Engineering, USA.

(3) Hongbo Zhang, East China University of Science and Technology, China.

(4) Anonymous, University of California, USA.

(5) Santosh Pandey, Iowa State University, USA.

Complete Peer review History: http://www.sciencedomain.org/review-history/22694

 

Abstracts

 

Aims: Design and assembly of an inexpensive microfluidic PDMS chip for visual detection of cell adhesion and biofilm formation.

Study Design: Three different styles of microchannels (2.6, 5.0, and 11.5 µl volumes) were designed, fabricated and tested for adhesion and biofilm formation in a microfluidic system. The pressure drop measurements system includes a bio-Ferrograph connected to the PDMS microchannel via a syringe and a pressure transducer.

Methodology: Microfluidic chips were fabricated using Polydimethylsiloxane (PDMS) by means of soft lithography. Different cell densities of E.coli K12 cells were introduced to investigate adhesion and biofilm formation at different time intervals. Stabilization time and hydraulic resistance were obtained via a Bio-Ferrograph connected to a pressure transducer.

Results: PDMS microfluidic volume (2.6 µl) failed to generate noticeable biofilm, while slight and greatest yield occurred with PDMS microchannels (5.0, and 11.5 µl), respectively, and could detect as low as 26 cells in 11.5 µl microchannel. As incubation time and/or initial cell density increases, cell adhesion increased, illustrated by crystal violet color intensity. High stabilization time (3 h) didn’t allow for bacterial attachment and cultivation inside the microchannel (2.6 µl) while lower stabilization time (10 min) yielded the highest capacity of cell adhesion in microchannel (11.5 µl). 

Conclusions: We developed a microfluidic chip with low stabilization time and hydraulic resistance, thus offering more volume for adhesion of bacterial cells and biofilm formation. It allowed bacterial cultivation without any addition of nutrients. The microfluidic chip provides a platform to monitor biofilm growth and can be integrated in situ investigations for biological systems, food biotechnology and other industrial biotechnology applications. This would allow a non-destructive and non-invasive monitoring of the biofilm-forming bacteria inside the PDMS microfluidic chip. This work opens opportunities for further investigations of pressure drop phenomena in microchannels that would otherwise go unnoticed in macro scale measurements.

 

Keywords :

Microfluidic; biofilm-forming bacteria; Escherichia coli; PDMS; bio-ferrograph; stabilization time; hydraulic resistance.

 

Full Article - PDF    Page 1-13    Article Metrics

 

DOI : 10.9734/ARRB/2018/37804

Review History    Comments

Search this site

Advanced Search

Announcement & News

Nature (Impact Factor: 41.6) confirmed high standard of SDI journal and its editors

We are happy to inform that Nature (Impact Factor: 41.6) confirmed high standard of SDI journal and ...

ISI Thomson Reuters selected British Journal of Pharmaceutical Research for Emerging Sources Citation Index

We are delighted to inform that ISI Thomson Reuters selected British Journal of Pharmaceutical Resea...

SCOPUS selected Annual Research & Review in Biology (ARRB)

We are delighted to inform that famous indexing organization SCOPUS (from Elsevier) selected  A...

Index Copernicus Evaluation Result Released

We are delighted to inform that Index Copernicus (a leading indexing organization from Pol...

Journal Repository (JR): Permanent Digital Archiving of SDI journals

SDI is happy to announce that all our journals are now permanently archived in Journal Repository (J...

SDI journal got 35th ranking in Publons

We are delighted to announce (as of 04/01/2016) that British Journal of Medicine and Medical Re...

Growth of SDI and world publication market

As of 2014, total 25,064 journals are competing in World market of journal publication. In 2011, tot...

Science (IF: 31) report confirmed the high standard of SDI journal

As per a recent report (Link) of Science journal (present Impact factor 31), one of our journal (Bri...

SDI introduced Post-publication peer review by its comment section

SDI journals encourage Post-publication peer review by its comment section   Policy details a...

SDI promotes transparent Advanced OPEN peer review

We have migrated to transparent and toughest ‘Advanced OPEN peer review’ system (...



SCIENCEDOMAIN Awards

  • No Awards listed.

Browser Compatibility : Mozila firefox, Google Crome and IE 7 & above. Creative Commons License Terms & Condition   |   Privacy Policy   |   Join Us   |   Help   |   Contact Us
© Copyright 2010-2018, SCIENCEDOMAIN international. All rights reserved.