+91 8617752708

Annual Research & Review in Biology, ISSN: 2347-565X,Vol.: 14, Issue.: 2

Original-research-article

A Novel Heart Disease Prediction System Based on Quantum Neural Network Using Clinical Parameters

 

Renu Narain1*, Sanjai Saxena1 and Achal Kumar Goyal2

1Department of Biotechnology, Thapar University, Patiala, Punjab -147004, India.

2University Computer Center, Gurukul Kangri University, Haridwar, Uttarakhand, India.

Article Information
Editor(s):
(1) George Perry, University of Texas at San Antonio, USA.
Reviewers:
(1) Preecha Yupapin, King Mongkut’s Institute of Technology Ladkrabang, Thailand.
(2) Ladislav Zjavka, VSB Technical University of Ostrava, Czech Republic.
Complete Peer review History: http://www.sciencedomain.org/review-history/19878

Abstracts

Aims: The diagnosis of Heart disease at earliest possible stage is very crucial to increase the chance of successful treatment and to reduce the mortality rate. The interpretation of cardiovascular disease is time-consuming and requires analysis by an expert physician. Thus there is a need of expert system which may provide quick and accurate prediction of Heart disease at early possible stage, without the help of physician.

Place and Duration of Study: The study was carried out during 2010 to 2013 in the vicinity of Yamuna Nagar, Haryana, India.

Methodology: The data used for this study consists of clinical values (Diabetes Mellitus, Low Density Lipoprotein, Triglycerides and High Density Lipoprotein) and has been collected from various Hospitals of 689 patients, who have symptoms of heart disease. All these cases are analyzed after careful scrutiny with the help of the Physicians. For training and evaluation purpose we have carefully predicted the level of heart disease by taking the help of Cardiologist/ Physician. The data consists of patients’ record with doctor’s predictions/ diagnosis.

Results: The obtained result of Heart disease prediction match with the expert physician’s opinion with 96.97% accuracy and shows high degrees of sensitivity and specificity.

Conclusion: The proposed Heart Disease Prediction System based on Quantum Neural Network gives the high degrees of accuracy in predicting the risk of cardiovascular diseases, are also the best results based on clinical factors. The result generated by this system has been evaluated and validated on data of patients with the Doctor’s diagnosis. This system will help the doctors to plan for a better medication and provide the patient with early diagnosis as it performs reasonably well even without retraining. Such an expert system may also prove useful in combination with other systems to providing diagnostic and predictive medical opinions in a timely manner.

Keywords :

Myocardial infarction; quantum neural network; atherosclerosis; clinical risk factors.

Full Article - PDF    Page 1-10 Article Metrics

DOI : 10.9734/ARRB/2017/10456

Review History    Comments

About Us

SCIENCEDOMAIN international (SDI) publishes high-quality, OPEN peer-reviewed, OPEN access international journals in various sectors of science, technology and

Our Contacts

Guest House Road, Street no - 1/6,
Hooghly, West Bengal,
India

+91 8617752708

 

Third Floor, 207 Regent Street
London, W1B 3HH,
UK

+44 20-3031-1429