Quick Menu

Upcoming Journals

Physical Science International Journal

Physical Science International Journal, ISSN: 2348-0130,Vol.: 9, Issue.: 4


Climate Sensitivity Parameter in the Test of the Mount Pinatubo Eruption


Antero Ollila1*

1Department of Civil and Environmental Engineering (Emer.), School of Engineering, Aalto University, Otakaari 1, Box 11000, 00076 AALTO, Espoo, Finland.


Article Information
(1) Yichi Zhang, Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China.
(2) Ismail Gultepe, Environment Canada, Cloud Physics and Severe Weather Res. Section, Canada.
(3) Abbas Mohammed, Blekinge Institute of Technology, Sweden.
(1) Anonymous, University of St. Thomas, USA.
(2) Mahmut Dogru, Bitlis Eren University, Turkey.
(3) S. B. Ota, Institute of Physics, Bhubaneswar, India.
(4) Bharat Raj Singh, Technical Campus, Lucknow, India.
Complete Peer review History: http://sciencedomain.org/review-history/13553




The author has developed a dynamic model (DM) to simulate the surface temperature change (ΔT) caused by the eruption of Mount Pinatubo. The main objectives have been 1) to test the climate sensitivity parameter (λ) values of 0.27 K/(Wm-2) and 0.5 K/(Wm-2), 2) to test the time constants of a simple first-order dynamic model, and 3) to estimate and to test the downward longwave radiation anomaly (ΔLWDN). The simulations show that the calculated ΔT of DM follows very accurately the real temperature change rate. This confirms that theoretically calculated time constants of earlier studies for the ocean (2.74 months) and for the land (1.04 months) are accurate and applicable in the dynamic analyses. The DM-predicted ΔT values are close to the measured value, if the λ-value of 0.27 K/(Wm-2) has been applied but the λ-value of 0.5 K/(Wm-2) gives ΔT values, which are about 100% too large. The main uncertainty in the Mount Pinatubo analyses is the ΔLWDN flux, because there are no direct measurements available during the eruption. The author has used the measured ERBS fluxes and has also estimated ΔLWDN flux using the apparent transmission measurements. This estimate gives the best and most consistent results in the simulation. A simple analysis shows that two earlier simulations utilising General Circulation Models (GCM) by two research groups are depending on the flux value choices as well as the measured ΔT choices. If the commonly used minimum value of -6 Wm-2 would have been used for the shortwave anomaly in the GCM simulations, instead of -4 Wm-2, the ΔT values would differ from the measured ΔT values almost 100%. The main reason for this error seems be the λ-value of 0.5 K/(Wm-2).


Keywords :

Global warming; climate sensitivity parameter; climate response time; radiative forcing response; downward radiative fluxes; Mount Pinatubo eruption.


Full Article - PDF    Page 1-14    Article Metrics


DOI : 10.9734/PSIJ/2016/23242

Review History    Comments

Search this site

Advanced Search

Announcement & News

Nature (Impact Factor: 41.6) confirmed high standard of SDI journal and its editors

We are happy to inform that Nature (Impact Factor: 41.6) confirmed high standard of SDI journal and ...

ISI Thomson Reuters selected British Journal of Pharmaceutical Research for Emerging Sources Citation Index

We are delighted to inform that ISI Thomson Reuters selected British Journal of Pharmaceutical Resea...

SCOPUS selected Annual Research & Review in Biology (ARRB)

We are delighted to inform that famous indexing organization SCOPUS (from Elsevier) selected  A...

Index Copernicus Evaluation Result Released

We are delighted to inform that Index Copernicus (a leading indexing organization from Pol...

Journal Repository (JR): Permanent Digital Archiving of SDI journals

SDI is happy to announce that all our journals are now permanently archived in Journal Repository (J...

SDI journal got 35th ranking in Publons

We are delighted to announce (as of 04/01/2016) that British Journal of Medicine and Medical Re...

Growth of SDI and world publication market

As of 2014, total 25,064 journals are competing in World market of journal publication. In 2011, tot...

Science (IF: 31) report confirmed the high standard of SDI journal

As per a recent report (Link) of Science journal (present Impact factor 31), one of our journal (Bri...

SDI introduced Post-publication peer review by its comment section

SDI journals encourage Post-publication peer review by its comment section   Policy details a...

SDI promotes transparent Advanced OPEN peer review

We have migrated to transparent and toughest ‘Advanced OPEN peer review’ system (...


  • No Awards listed.

Browser Compatibility : Mozila firefox, Google Crome and IE 7 & above. Creative Commons License Terms & Condition   |   Privacy Policy   |   Join Us   |   Help   |   Contact Us
© Copyright 2010-2018, SCIENCEDOMAIN international. All rights reserved.